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(e-mail: abouzas@fis.cinvestav.mx)

Received: 24 October 1997 / Published online: 26 February 1998

Abstract. We consider unstable-particle scattering in the context of 3-body processes. We show that all
partial-wave cross-sections are finite and positive, and the total cross-section is proportional to the trans-
verse size of space in the region of on-shell particle exchange. We comment on the role of loop corrections.

1 Introduction

At tree-level, Feynman diagrams for 2-body scattering
processes can have just simple poles as singularities in the
physical region. In particular, logarithmic thresholds only
appear in higher-order diagrams. The singularity struc-
ture of Feynman graphs becomes increasingly complicated
as the number of external legs grows. Thus, we can have
thresholds in the physical region of tree-level graphs if the
number of external legs is larger than four. By physical re-
gion we understand here real, on-shell external momenta.

Consider, for instance, the 3-body tree-level graphs in
Figs. 1a and 1b. For concreteness, we shall temporarily
assume that these are QED Feynman graphs. In both di-
agrams the two upper vertices can be viewed as a 2-body
scattering process one of whose final-state particles subse-
quently undergoes a further 2-body subprocess compris-
ing the two lower vertices. Clearly, there is a domain of
external momenta in the physical region for these graphs
where the internal particle shared by both scattering sub-
processes is kinematically allowed to be on its mass shell.
As functions of the squared center-of-mass energy s, these
Feynman graphs have a branch-cut extending over the in-
terval of values of s for which the on-shell propagation of
the internal fermion is kinematically possible. Such sin-
gularity is not present in graph 1c, unless the external
photon lines are sufficiently off-shell.

There is another situation in which such singularity
can occur in a 2-body scattering diagram. Imagine that
the wavy lines in 1a and 1b are not photons but unsta-
ble massive bosons that can decay into an e+e− pair. If
the momenta of the external particles connected to these
bosons in 1a were chosen appropiately, the momentum
circulating along boson lines would lie on their resonance
peak and diagram 1a could dominate over 1b and other 3-
body diagrams contributing to the same amplitude. In this
kinematic region, then, the process would be effectively 2-
body, and could be represented by graph 1c – with the
caveat, though, that 1c is only a short-hand notation for
1a, since unstable particles cannot be asymptotic states.
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Fig. 1. Generic Feynman diagrams for 3- and 2-body scatter-
ing processes

If the external unstable particles in 1c were long-lived
enough, such scattering process could be accesible to ex-
periments. We would then be interested in computing the
cross-section of a 2-body process possessing the type of
singularities discussed above. This problem has been posed
before, in connection with several different phenomenolog-
ical situations. For example, the process N∗π → N∗π, in
which the intermediate particle is a nucleon, was consid-
ered in [1] in relation with the so-called “Peierl’s mech-
anism.” The process µ+µ− → WW ∗ was considered in
[2], and a similar problem was discussed in the context
of an effective model Lagrangian in [3]. In all of these
cases the amplitudes for graphs analogous to 1c were as-
sumed to have a Breit-Wigner form, in spite of the fact
that the exchanged particle is stable. Such assumption
can be heuristically motivated by the fact that the ex-
ternal unstable states are on their “mass-shell,” which is
identified with their complex pole mass [1]. In the famil-
iar case of resonance-formation processes in the s-channel,
the Breit-Wigner form of the amplitude can be rigorously
proved by Dyson resummation of the propagator followed
by Laurent expansion around the pole [4]. As far as we
know, no proof exists in the case of processes like 1a,b,c.
Below we shall argue that this assumption can lead to a
good approximation to the tree-level cross-section in some
situations.

The singularity in 3-body diagrams like 1a and 1b is a
manifestation of a well-known phenomenon, namely, that
a singularity in an amplitude occurs if the interaction is
unbounded in space-time. As long as the exchanged par-
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ticle in 1a,b,c is virtual, the uncertainty principle restricts
the space-time distance over which it can propagate, but
when it can be on-shell the process becomes unbounded
and the amplitude singular [5, §18.5]. The same situation
can occur in higher-order diagrams. According to a the-
orem by Coleman and Norton [6] (see also [7, §6.3.4]), a
Feynman graph will possess a singularity in its physical
region if and only if the graph can be interpreted as a
momentum-conserving process in space-time with all in-
ternal lines on their mass-shell and propagating forwards
in time1. The Coleman-Norton theorem is formulated for
1-particle irreducible diagrams and valid to all orders of
perturbation theory. The singularities in tree-level graphs
such as 1a,b have the same physical origin.

In the particular situation considered here of graphs
1a,b,c these general statements can be made more quan-
titative. The physical region for s in 1a,b is of the form
0 < sth ≤ s < ∞. The kinematical region over which on-
shell internal particles are allowed will be limited by values
s±, and will partially or completely overlap the physical
region. Let us assume, for concreteness, that sth < s− <
s+. In the region s− ≤ s ≤ s+ where the internal particle
can be on-shell, it can propagate over arbitrarily long dis-
tances. Therefore, although the largest momentum it can
have is finite, the angular momentum of the process can
be arbitrarily large. In fact, an on-shell internal particle
will feed partial waves with essentially uniform probabil-
ity, leading to a total cross-section that behaves as,

σ =
L∑

`=0

σ` ∼
L∑

`=0

O(1) ∼ O(L) as L → ∞ . (1)

Since L ∼ pb with p the (fixed) transverse linear momen-
tum and b the impact parameter, we conclude that the
cross-section due to on-mass-shell particle exchange di-
verges as σ ∼ b, where b is the transverse dimension of
space.

On the other hand, in the region s < s− or s > s+,
the interaction region is bounded. Each partial-wave cross-
section σ` is finite and decreases rapidly with ` so that
the sum converges to a finite value σ. As s approaches
s− (s+) from below (above), the intermediate particle can
be closer to its mass-shell and propagate over increasingly
larger distances. Even though for each partial wave the
transverse size of the process is fixed, since ` is fixed, in
the limit s → s± the longitudinal size is unbounded and
as a consequence each partial wave is singular at s = s±.
The singularity is logarithmic, though, and therefore inte-
grable, thus leading to finite results for suitably averaged
observables.

We substantiate these assertions in the rest of this pa-
per. In the next section we perform a brief kinematical
analysis which serves to establish our notation. We also
define there the cross-section for graph 1c, which is de-
rived from 1a. In Sect. 3 we show that all partial-wave
cross-sections are finite and positive and, as shown in

1 Notice, however, that the notion of “physical region” used
in [6] is less restrictive than ours. External lines are not re-
quired to be on-shell in [6]
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Fig. 2. 3-body scattering graphs in the kinematical region
where unstable internal particles are close to their pole mass

Sect. 4, they result in a total cross-section wich diverges
with the transverse dimension of space as indicated above.
In Sect. 5 we give some final remarks, commenting in par-
ticular on the rôle of loop corrections.

2 2- and 3-body processes

We consider in this section the situation described in the
Introduction, in which diagrams of the type 1a dominate
over other diagrams contributing to the amplitude. We
will work with scalar fields for simplicity, with couplings
of the form gφ†φX, where φ is a light complex scalar field
and X a heavy real one with mX > 2mφ. We then have
the graphs shown in Fig. 2 for the process,(

φ(p1)φ(p2)
)
φ(k1) → X(q1)φ(k1) → Y (q2)φ(k2)

→ (
φ(p3)φ(p4)

)
φ(k2) . (2)

Here we have a different scalar Y in the final state, with
mass mY > 2mφ and coupling gφ†φY , but we shall not in-
troduce a new coupling constant for simplicity. We assume
that the initial stable particles are described by plane
waves and therefore have sharply defined momenta. Fur-
thermore, q1 = p1 + p2 and q2 = p3 + p4 are assumed to
lie within the resonance peak of X and Y , respectively.

We introduce Mandelstam invariants in the usual way,
by reference to the underlying 2-body processes,

s = (q1 + k1)2; t = (k2 − k1)2; u = (k2 − q1)2 . (3)

We then have,

M3→3 =
−g

q21 −m2
X + imXΓX

M2→3 (4)

M2→3 =
−g

q22 −m2
Y + imY ΓY

M2→2 (5)

M2→2 = −ig2

{
1

u−m2
φ + i0+ +

1
s−m2

φ + i0+

}
(6)

We retained only the pole part in the X and Y propa-
gators, in view of our assumption that their momenta are
close to the peak. Since q1 remains constant as we vary the
final state momenta, we defined an amplitude M2→3 for
the process with an unstable X particle in the initial state
by factoring out the constant propagator and production
vertex. We also defined a 2-body amplitude M2→2 by for-
mally applying Feynman rules to the 2-body process.
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The s-variable physical region for the 3-body scatter-
ing is s ≥ 9m2

φ. Since we are interested in the kinematic
region where both X and Y are close to their resonance
peak, we must have,

s ≥ sth = (max(mX ,mY ∗) +mφ)2 (7)

where we denoted q22 = (p3 + p4)2 = m2
Y ∗ , with mY ∗ close

to mY . We let q21 = m2
X exactly for concreteness, although

it could as well have another value within ∼ ΓX of mX .
Given q21 = m2

X and q22 = m2
Y ∗ , at fixed s the squared-

momentum flowing through the internal φ line is restricted
to the interval u− ≤ u ≤ u+ with

u± =
m2

X +m2
Y ∗ + 2m2

φ − s

2
+

(m2
X −m2

φ)(m2
Y ∗ −m2

φ)
2s

± 1
2s

√
(s−m2

X +m2
φ)2 − 4sm2

φ

×
√

(s−m2
Y ∗ +m2

φ)2 − 4sm2
φ . (8)

The singularity at u = m2
φ in the amplitude falls in the

physical region if u− ≤ m2
φ ≤ u+. From (8) we see that

this is possible only when s− ≤ s ≤ s+, where

s± = (9)

m2
Xm

2
Y ∗ + 2m4

φ ±mXmY ∗
√
m2

X − 4m2
φ

√
m2

Y ∗ − 4m2
φ

2m2
φ

.

Notice that u+ ≤ m2
X ,m

2
Y as long as s ≥ sth, and that

s− ≥ sth, so that the region where exchange of an on-shell
φ is kinematically allowed is entirely within the physical
region of the 2-body process, but the absorptive part of
the φ propagator vanishes in that region. The range of
variation of t and its values in the region s− ≤ s ≤ s+ can
be obtained from s+ t+ u = m2

X +m2
Y ∗ + 2m2

φ.
In what follows we shall assume mX ,mY � mφ for

simplicity. In that case we get,

u−=m2
X +m2

Y ∗ − s ; u+ =
m2

Xm
2
Y ∗

s
;

u+ − u−=
(s−m2

X)(s−m2
Y ∗)

s
(10)

instead of the more complicated expressions (8), and

s− = m2
X +m2

Y ∗ ; s+ =
m2

Xm
2
Y ∗

m2
φ

→ +∞ . (11)

Cross-sections for the 2 → 3 process are given by,

σ2→3=
1

2(s−m2
X)

∫
d3k2

(2π)32k0
2

d3p3

(2π)32p0
3

d3p4

(2π)32p0
4
(2π)4

×δ(PTot − k2 − p3 − p4)Θ(cuts) |M2→3|2 (12)

PTot being the total 4-momentum of the process, and
Θ(cuts) a step function enforcing the cuts that define the
cross-section we are computing. We shall only use a loose
lower bound on m2

Y ∗ as cut in this paper, for reasons to be

explained below. σ2→3 is conventionally defined in (12) in
terms of the flux-factor corresponding to an initial |X,φ〉
state.

In order to express σ2→3 as a function of q2 we make
a change of variables, q2 = p3 + p4, ∆ = p4 − p3, and
integrate over ∆ to obtain,

σ2→3=
g2

8(2π)4(s−m2
X)

×
∫
d4k2d

4q2 δ+(k2
2)δ(PTot − k2 − q2)

× Θ(cuts)
(q22 −m2

Y )2 +m2
Y Γ

2
Y

|M2→2|2 , (13)

in terms of M2→2. Since q2 is kinematically guaranteed to
be in the forward light-cone, a resolution of the identity
exists,

1 =
∫ ∞

0
d(m2

Y ∗)δ(q22 −m2
Y ∗) (14)

which, upon insertion in σ2→3 and integraton over q2 and
k0
2, |k2|, yields,

σ2→3=
g2

(2π)364s

∫ 1

−1
d(cos θ)

∫ s

0
d(m2

Y ∗) (15)

× Θ(cuts)
(m2

Y ∗ −m2
Y )2 +m2

Y Γ
2
Y

s−m2
Y ∗

s−m2
X

|M2→2|2

where θ is the scattering angle, cos θ ∝ k1 · k2.
We can now define a 2-body cross-section by factoring

out the coupling constant and phase-space factor coming
from the Y decay vertex,

σ2→2=
1

32πs

∫ 1

−1
d(cos θ)

∫ s

0
d(m2

Y ∗)Θ(cuts)

×∆BW (m2
Y ∗)

s−m2
Y ∗

s−m2
X

|M2→2|2 (16)

∆BW (m2
Y ∗) ≡ mY ΓY /π

(m2
Y ∗ −m2

Y )2 +m2
Y Γ

2
Y

. (17)

This equation can be rewritten in the more suggestive
form,

σ2→2 =
∫ s

0
d(m2

Y ∗)Θ(cuts)∆BW (m2
Y ∗) σ̃2→2 , (18)

where σ̃2→2 is the cross-section we would obtain by pre-
tending that X and Y are asymptotic states and applying
the Feynman rules to the 2-body process directly. Clearly,
the same equation holds mutatis-mutandis for the differ-
ential cross-section dσ2→2/d(cos θ). From (6) we immedi-
ately obtain for σ̃2→2,

σ̃2→2=
g4

16πs
s−m2

Y ∗

s−m2
X

{
1
s2

+
s

m2
Xm

2
Y ∗(s− − s)

(19)

+
2

(s−m2
X)(s−m2

Y ∗)
ln
(
m2

Xm
2
Y ∗

s

1
s− − s

)}
.
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For completeness, we also quote the form of σ̃2→2 when
we do not neglect mφ in comparison with mX,Y ,

σ̃2→2=
g4

16πs
|k2|
|k1|

{
1

(s−mφ)2
+

s

m2
φ

1
(s− s−)(s− s+)

+
1
2

1
|k2||k1|(s−m2

φ)
ln

(
u+(s) −m2

φ

u−(s) −m2
φ

)}
, (20)

where |k2| refers to its center-of-mass frame value, and u±
as functions of s are given in (8). This expression for the
cross-section is valid for sth ≤ s < s− and s > s+, with s
“far” (to be quantified below) from the singular points s±.
In the interval between s± the direct u-channel contribu-
tion is negative and unbounded, and the s-u interference
term becomes imaginary.

3 Partial-wave amplitudes and cross-sections

The amplitude M2→2 (see (6)) entering the 2-body cross-
section defined in (16) can be expanded in partial waves,

M2→2=−ig2
(

1
s+ i0+ +

2
u+ − u−

×
∞∑

`=0

(2`+ 1)Q`(ξ + i0+)P`(cos θ)

)
, (21)

where u± are defined in (10), P` are Legendre polynomials
and Q` Legendre functions of the second kind [8,9], θ is
the scattering angle and,

ξ = 1 +
2u−

u+ − u−
= 1 +

2s(m2
X +m2

Y ∗ − s)
(s−m2

X)(s−m2
Y ∗)

. (22)

Q`(z) has a logarithmic branch-cut for z real, −1 ≤ z ≤ 1,
so we see that each partial-wave amplitude has a branch-
cut in the region of on-shell φ exchange, s− ≤ s < s+
(→ +∞ as mφ/mX,Y → 0). Notice that in the case of
a genuine 2-body scattering the partial-wave expansion
(21,22) would hold unchanged, but we would have ξ >
1 for all finite s in the physical region. Only in 3-body
processes can ξ go through 1, and in that case there is
on-shell particle exchange.

For sth ≤ s < s− we must take the principal branch of
Q`, i.e. Q`(ξ > 1) real. Therefore, as s goes through s−,
and ξ goes through 1, the i0+ prescription results in,

Q`(ξ + i0+) = Q`(ξ) − i
π

2
P`(ξ) (23)

with Q` a Legendre function “on the cut” [8,9]. The first
term in (23) gives the dispersive, and the second the ab-
sorptive, part of the u-channel amplitude (u + i0+)−1.
Therefore, they refer to “virtual” and “real,” or on-shell,
particle exchange, respectively.

We shall separate the contributions to the cross-section
coming from the regions s < s− and s > s− for conve-
nience,

σ2→2 =
∞∑

`=0

σ`
2→2 ; σ`

2→2 =
(
σ`

2→2
)
B

+
(
σ`

2→2
)
A
, (24)

where the contributions from the regions “below” and
“above” s− are found by substituting each squared partial-
wave amplitude in expression (16) for the cross-section.
Thus, for ` > 0 we have,

(
σ`>0

2→2
)
B

=
(2`+ 1)g4s

4π(s−m2
X)3

∫ s

s−m2
X

d(m2
Y ∗) (25)

×Θ(cuts)∆BW (m2
Y ∗)

s−m2
Y ∗

Q2
`(ξ)

(
σ`>0

2→2
)
A
=

(2`+ 1)g4s

4π(s−m2
X)3

∫ s−m2
X

0
d(m2

Y ∗) (26)

×Θ(cuts)∆BW (m2
Y ∗)

s−m2
Y ∗

(
Q2

`(ξ) +
π2

4
P 2

` (ξ)
)

and for ` = 0, with the contribution from the s-channel
diagram in Fig. 2b,

σ`=0
2→2=

g4

16πs

∫ s

0
d(m2

Y ∗)Θ(cuts)∆BW (m2
Y ∗)

s−m2
Y ∗

s−m2
X

×
{

1
s2

+
4

(s−m2
X)(s−m2

Y ∗)

×
(
Θ(ξ − 1)Q0(ξ) +Θ(1 − ξ)Q0(ξ)

)
+

4s2

(s−m2
X)2(s−m2

Y ∗)2
(27)(

Θ(ξ − 1)Q2
0(ξ) +Θ(1 − ξ)

(
Q2

0(ξ) +
π2

4

))}
,

where ξ as a function of m2
Y ∗ , m2

X and s is given in (22),
and we used (10). We could also write σ2→2 as a sum of
“virtual” and “real”contributions, obtained from (24–27)
by setting P` ≡ 0 or Q` ≡ 0 ≡ Q`, respectively.

There are three potentially dangerous singularities in
the integrands of (25–27). In the first place, terms involv-
ing Q` are integrated over s−m2

X ≤ m2
Y ∗ ≤ s, so that the

factor (s − m2
Y ∗)−1 is singular at the upper end of inte-

gration. Since ξ = O(1/(s−m2
Y ∗)) as m2

Y ∗ → s, however,
that would-be pole is cancelled by the zero of order `+ 1
of Q` at infinity.

Secondly, (25–27) are all singular at s → (m2
X)+. These

are spurious singularities due to our neglecting mφ. Let
us consider those integrals involving Q`≥0 first. As long as
m2

Y ∗ > 0, we have ξ = O(1/(s−m2
X)) as s → (m2

X)+, so
the singularity is cancelled by the zero of Q` at infinity.
If m2

Y ∗ = 0, however, ξ remains finite as s → (m2
X)+ and

there is a pole in that limit. We will introduce a cut in the
domain of integration,

Θ(cuts) = Θ(m2
Y ∗ − λ2) (28)

with λ2 > 0, so the singularity does not develop. We will
elaborate further on the physical meaning of this kine-
matical cut below. Notice, however, that each partial-wave
cross-section should be insensitive to the precise value of
λ2, at least so long as ΓY � mY . If ΓY ∼ mY , then the
very notion of an effectively 2-body scattering comes into
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question and the whole process should be dealt with, in-
cluding all possible diagrams with 3 stable particles in the
final state. The cut (28) also solves the problem in the
other integrals not involving Q`, since now we must have
s ≥ m2

X +λ2 > m2
X in order to be in the region of on-shell

φ-exchange, and those integrals are then strictly zero for
s < m2

X + λ2.
Lastly, there is a branch point of Q` and Q` at ξ = 1

(or, m2
Y ∗ = s−m2

X) which is an end-point of integration.
This is actually the only true singularity of the integrand.
It is a logarithmic singularity, though, and therefore in-
tegrable. The partial-wave cross-sections (25–26) are thus
finite and positive for all ` and s ≥ sth.

These expressions for partial-wave cross-sections are to
be compared with the heuristic Ansatz [1–3],

MAnsatz
2→2 = −ig2

(
1

u+ imY ΓY
+

1
s+ i0+

)
, (29)

leading to partial-wave cross-sections of the form,

(
σ`>0

2→2
)
Ansatz=

g4

4πs
1

(u+ − u−)2
(2`+ 1)

s−m2
y

s−m2
x

×
∣∣∣∣Q`

(
ξ̃ +

2imY ΓY

u+ − u−

)∣∣∣∣2 , (30)

where ξ̃ is given by (22) with mY ∗ = mY . Both (25–
26) and (30) approach (19) in the narrow resonance limit
ΓY /mY → 0, and depend on ΓY as ln2(ΓY ) at the max-
imum at s = s−. Therefore, we expect (25–26) and (30)
to be close to each other for moderate values of ΓY /mY

and `. We notice, however, that (30) leads to a finite total
cross-section over the whole kinematical range s ≥ sth, so
that it must have a different `-dependence for large values
` & mY /ΓY .

Before turning to total cross-sections, we would like to
remark that (25–26) for σ`

2→2 were derived in the ideal-
ized assumption that the initial-X momentum is sharply
defined and, in particular, its squared-momentum is pre-
cisely known. Let us assume now that q1 in Fig. 2 is statis-
tically distributed, with a flat probability density F over
a range of values centered around q21 = m2

X . The squared
amplitude in this case takes the form of an incoherent
sum, schematically,∫

d(m2
X∗) F(m2

X∗)∆BW(m2
X∗)

×
∫
d(m2

Y ∗)∆BW (m2
Y ∗)|M2→2|2 . (31)

If F(m2
X∗) is very narrow, or if ΓX/mX → 0, we recover

(25–27). If, instead, ΓY /mY � ΓX/mX , then we can re-
place ∆BW (m2

Y ∗) ∼ δ(m2
Y ∗ −m2

Y ) and we have,∫
d(m2

X∗) F(m2
X∗)∆BW(m2

X∗)|M2→2|2 . (32)

If ∆BW (m2
X∗) is narrower than F(m2

X∗), the latter is es-
sentially constant over the range of integration so it can be

taken outside the integral and we end up with an expres-
sion analogous to (25–27), but with ∆BW (m2

X∗) in place of
∆BW (m2

Y ∗). In this case, the correct Ansatz is (29) with
mXΓX instead of mY ΓY . A similar result obtains if we
consider wave-packets as initial state rather than an in-
coherent superposition. In that case the methods of [10]
must be applied, but we shall not go into the details here.

4 Total cross-sections

A direct application of Feynman rules in the Born ap-
proximation to the graphs shown in Fig. 2 leads to the
total cross-section (19), which is singular as s → s− from
below and negative for s > s−. As we have seen in the
previous section, all partial-wave cross-sections σ`

2→2 are
finite and positive. If we try to compute σ2→2 as the sum
of partial-wave cross-sections (24), however, we are ob-
viously led back to (18,19) as can be explicitly checked.
This fact tells us that the singularities in the total cross-
section are due to the bad convergence properties of the
sum in (24) or, equivalently, of σ`

2→2 as ` → ∞. The phys-
ical reasons for this bad convergence were discussed in the
Introduction. In this section we will quantitatively study
the convergence properties of σ`

2→2. In the next two sub-
sections we present some simple but somewhat technical
results which we discuss below in subsection 4.3.

4.1 The region of on-shell exchange

Let us first consider the term in (26) that involves P`. It
can be rewritten as,∫ 1

−1
dξϕ(ξ)P 2

` (ξ) , (33)

where ϕ represents the combination of factors in front of
P` in the integrand of (26). In particular, ϕ contains a
factor Θ(cuts). As we will now see, the dependence of (33)
on ` is not sensitive to the details of the cut, such as the
precise value of λ2 or the form of Θ. We will take Θ not
as a step-function, but as some smooth approximation to
it. In this way we can consider ϕ to be continuous, non-
negative and not everywhere-vanishing on the interval of
integration.

We will now show that (33) is O(1/`) as ` → ∞. This
may seem obvious in view of the normalization of P`, but
the key-point here is that as long as ϕ is positive and con-
tinuous the convergence will not be faster, independently
of the particular form of ϕ. Since ϕ is continuous over a
compact interval, it can be uniformly approximated by a
polynomial to any desired accuracy, due to a theorem of
Weierstrass [11]. Therefore, we need only consider the case
of polynomial ϕ. Since it is independent of `, we may in-
tegrate ϕ term by term in (33) and study the convergence
of each term separately. Furthermore, since P 2

` is even, we
need only consider even powers of ξ.

Thus, we have to see that,∫ 1

−1
dx (xnP`(x))

2 = O
(

1
`

)
n = 0, 1, 2, . . . (34)
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The case n = 0 is just the normalization of P`. Let us
consider n = 1,

xP`(x) =
`+ 1
2`+ 1

P`+1(x) +
`

2`+ 1
P`−1(x) (35)

[8,9]. We notice that the coefficients on the right-hand side
of (35) are positive, and that they add up to 1, i.e., xP`(x)
is a convex combination of P`±1(x). It easily follows by
induction that a similar relation holds for all n and `,

xnP`(x) =
n∑

k=−n

′ak(n, `)P`+k(x) ;

ak(n, `) > 0 ;
n∑

k=−n

′ak(n, `) = 1 , (36)

where the prime indicates that the sum runs only over k
with the same parity as n. Since the second of (36) is true
for all ` and n, we must have,

lim
`→∞

ak(n, `) = ak(n) with 0 ≤ ak(n) ≤ 1 (37)

and not all ak(n) = 0. Thus, we can write,∫ 1

−1
dx (xnP`(x))

2

=
∫ 1

−1
dx

n∑
k,j=−n

ak(n, `)aj(n, `)P`+k(x)P`+j(x)

=
n∑

k=−n

a2
k(n, `)

2
2(`+ k) + 1

(38)

and, since n and k are independent of `, we can take the
limit ` → ∞ to obtain,

(2`+ 1)
∫ 1

−1
(xnP`(x))2 −→ 2

n∑
k=−n

a2
k(n) . (39)

The same argument goes through for the term in (26)
involving Q`, because recursion relation (35) is valid if we
substitute Q` for P` there, and because [8]∫ 1

−1
dxQ2

`(x)=O
(

1
`

)
;∫ 1

−1
dxQ`+nQ`+m=O

(
1
`2

)
(m 6= n) (40)

as ` → ∞. Therefore, (σ`
2→2)A is a finite constant in the

limit ` → ∞ and we have,

(σ2→2)A = lim
L→∞

L∑
`=0

(
σ`

2→2
)
A

= O(L) , (41)

as claimed in the Introduction.

4.2 The region of off-shell exchange

We now turn to integral (25), which involves Q` and can
be written in the form,∫ ∞

1
dξ ϕ(ξ)

[
(s+m2

X) + (s−m2
X)ξ

]
Q2

`(ξ) , (42)

where ϕ represents the combination of factors in the in-
tegrand in (25), but we have explicitly extracted a term
linear in ξ coming from the denominator (s−m2

Y ∗) in (25)
which diverges at the upper limit of integration. We shall
assume that ϕ(ξ) is continuous and bounded in the in-
terval of integration and that it is positive, and non-zero
for 1 ≤ ξ ≤ a, for some finite a > 1. The integrand in
(25) satisfies all of these conditions once the singular term
(s−m2

Y ∗)
−1 is factored. First, we show that,∫ ∞

a

dξ ϕ(ξ)[(s+m2
X) + (s−m2

X)ξ]Q2
`(ξ)

≤ cst
a(2`−1)`

; a > 1 . (43)

Notice that since a > 1 the right-hand side of this equation
is negligibly small for large `, and that better bounds can
be found. We can write [8], for ξ > 1,

Q`(ξ)=
√
π

2

(
ξ −

√
ξ2 − 1

)`+ 1
2

(ξ2 − 1)
1
4

Γ (`+ 1)
Γ (`+ 3

2 )

×2F1

(
1
2
,
1
2
, `+

3
2
,
−ξ +

√
ξ2 − 1

2
√
ξ2 − 1

)

≤
√
π

2

(
ξ −

√
ξ2 − 1

)`+ 1
2

(ξ2 − 1)
1
4

Γ (`+ 1)
Γ (`+ 3

2 )

≤
√
π

2
1

ξ`+ 1
2

1
(ξ2 − 1)

1
4

Γ (`+ 1)
Γ (`+ 3

2 )
. (44)

Substitution of this inequality in the left-hand side of (43)
leads to the desired result, since ϕ is bounded.

Next, we show that,∫ a

1
dξ ϕ(ξ)[(s+m2

X) + (s−m2
X)ξ]Q2

`(ξ)

= O
(

1
`2

)
as ` → ∞ . (45)

We can follow the same procedure as in the previous sec-
tion, the only difference being that now odd powers of ξ
must also be considered. We have [8,9],∫ a

1
dξ Q2

`(ξ)=
∫ ∞

1
dξ Q2

`(ξ) −
∫ ∞

a

dξ Q2
`(ξ)

=
ψ′(`+ 1)
2`+ 1

− o

(
1

a2`−1`

)
→ 1

`2
, (46)

where ψ is a digamma function [8,9]. The case of even
powers then follows from here since Q` satisfies the same
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recursion relation (35) as P`, and since,∫ a

1
dξ Q`+n(ξ)Q`+m(ξ) (47)

=
∫ ∞

1
dξ Q`+n(ξ)Q`+m(ξ) −

∫ ∞

a

dξ Q`+n(ξ)Q`+m(ξ)

=
ψ(`+ n+ 1) − ψ(`+m+ 1)

(n−m)(2`+ n+m+ 1)
− o

(
1

a2`−1`

)
→ 1

`2
.

We can then apply the same arguments as above. For odd
powers we have, ξ2nQ2

`(ξ) ≤ ξ2n+1Q2
`(ξ) ≤ ξ2n+2Q2

`(ξ) for
1 ≤ ξ ≤ a and hence the same result must hold. Finally,

(2`+ 1)
∫ ∞

1
dξ ϕ(ξ)[(s+m2

X)

+(s−m2
X)ξ]Q2

`(ξ)
`→∞−→ cst

`
, (48)

as asserted above.

4.3 Remarks

The preceding results show how the cross-section behaves
as a function of s, and the influence of the kinematical
cut λ2. Let us take λ2 < m2

Y , and consider (σ`
2→2)A.

For s < m2
X + λ2, (σ`

2→2)A = 0. When m2
X + λ2 <

s < m2
X + m2

Y , we have (σ`
2→2)A > 0 and, as shown in

(41), (σ2→2)A diverges. Both (σ`
2→2)A and (σ2→2)A are of

O(g6), and therefore negligible in the 2-body approxima-
tion, because the integral in (σ`

2→2)A does not include the
peak of ∆BW (m2

Y ∗). It is only when s − m2
X
>∼m2

Y that
(σ`

2→2)A, (σ2→2)A are actually non-vanishing in the 2-
body approximation. Thus, in this case, the precise value
of λ2 is irrelevant as long as it lies below the peak of ∆BW .

The cut does influence the dependence of (σ`
2→2)B

on s. In the region s < m2
X + λ2, the branch point at

m2
Y ∗ = s − m2

X (or, ξ = 1) is excluded by Θ(cuts) from
the integration region in (25). Thus, (43) applies, imply-
ing that (σ`

2→2)B converges to zero fast enough to make
(σ2→2)B finite. We are here essentially in the same situa-
tion as in (19) with s < s−.

When s > m2
X + λ2, on the other hand, the range of

integration in (25) extends all the way down to m2
Y ∗ =

s − m2
X (or, ξ = 1 in (42)) and (48) holds, leading to

a cross-section (σ2→2)B diverging with L as log(L). For
s>∼m2

X + m2
Y , finally, the peak of ∆BW (m2

Y ∗) leaves the
integration region and (σ`

2→2)B , (σ2→2)B become O(g6)
and therefore negligible.

We see, then, that the value of λ2 determines the point
s = m2

X + λ2 at which (σ2→2)B is singular, i.e., it is the
lowest value of m2

Y ∗ at which we start considering Y to
be “on-shell.” It is therefore inherently ambiguous. In the
case of (19), this value is taken as m2

Y . When we take
into account the finite width of Y , λ2 should be set to
λ2 = m2

Y − αmY ΓY with α ∼ 1–2.
It is worth-while to stress here that the need for a cut

λ2 is independent of the kinematical singularity mentioned

in the paragraph preceding (28). Even if we set mφ > 0,
a cut in m2

Y ∗ is needed. Notice, however, that if mφ > 0
we would also need an upper cut Θ(λ′2 − m2

Y ∗), where
now λ′2 = λ2 = m2

Y +αmY ΓY , α ∼ 1–2. Since for mφ = 0
the region of on-shell particle exchange extends to infinity,
no upper kinematical cut is needed (or possible) – actu-
ally, ∆BW (m2

Y ∗) does the job as described in the previous
paragraph.

5 Final remarks

In the foregoing sections we treated the problem of un-
stable-particle scattering in the context of 3-body reac-
tions. We showed how the cross-sections can be defined in
Sects. 2 and 3. The spatial singularities of the total cross-
section were characterized in Sect. 4. The result found
there for the total cross-section in the region of on-shell ex-
change, σ2→2 = O(L), agrees with the conclusions of [10].
Indeed, an initial state consisting of wave-packets has an
angular-momentum cut-off Lmax. Therefore, we must have
in that case σ2→2 ∼ Lmax ∼ b, with b the largest available
impact parameter, and then σ2→2 grows linearly with the
transverse size of the wave-packets. In the general casse of
asymmetric wave-packets, of different radii in each beam,
σ2→2 must be proportional to the largest one. In the re-
gion of off-shell exchange, σ2→2 ∼ logL as we approach
the singular point.

The results of the previous sections were obtained at
tree-level, with the exception of the Breit-Wigner form
used for the propagators of unstable particles near their
resonance peak. It is for this reason that we had to in-
troduce an arbitrary mass cut-off λ that separates the
resonance peak, where the amplitude is O(g4), from the
tail where it is O(g6). This cut λ is inherently ambiguous,
λ2 = m2−αmΓ with α ∼ 1–2, and should not be necessary
in a more complete treatment including loop corrections.
We notice also that partial-wave cross-sections σ`

2→2 are of
order ∼ g4 log(Γ 2/m2)/(m2s2) at their maximum. They
are therefore far from saturating unitarity bounds as hap-
pens in the case of s-channel resonance formation, where
σ`=0

2→2 ∼ O(1) in the coupling constant.
Let us consider one more time the Feynman graph for

the process, redrawn in Fig. 3a for convenience. For s− <
s < s+, the intermediate state indicated by the dashed
line can be formed by particles 2, 3, 4 propagating on their
mass-shell and forward in time. Given that particles 2 and
3 do interact, we ask what is the probability that these
particles will propagate over a long distance before the
interaction takes place. The heuristic Ansatz (29) implies
that this probability decays exponentially with rate 1/Γ5,
the characteristic resonance formation time for particle 5.

We have shown that at tree level there is no charac-
teristic length-scale governing the process, thus leading to
σ2→2 = O(L) as L → ∞. That result is most likely not
changed by loop corrections when 1 and 5 in Fig. 3a are
stable virtual particles. Whether the tree-level result is
altered by loop corrections when unstable particles are in-
volved and, in particular, whether loop corrections lead to
(29) is currently under study. It is worth remarking here
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Fig. 3. a The graph in Fig. 2a is redrawn here omit-
ting the external legs labelled p1–4. Particles 1 and 5
correspond to X, Y and 2,3,4 to φ, resp., in Fig. 2a.
b–e Some one-loop corrections to the process de-
picted in a. f A unitary cut in d

that equation (32) suggests that Ansatz (29) may not be
the complete answer when more than one species of un-
stable particle are involved.

Self-energy loop insertions such as graph 3b cannot
change the basic conclusions reached at tree-level,
although they lead to an amplitude with a stronger sin-
gularity ∼ 1/u2, than that found at tree-level, ∼ 1/u.
Resummation of these corrections, however, will only lead
to mass and wave-function renormalization, since particle
3 is stable and its self-energy cannot have an absorptive
part at the pole. The opposite is true for vertex correc-
tion 3c, which will have a non-vanishing absorptive part
when particle 3 is on-shell, but depends on u as ∼ 1/u. As
long as the coupling constant is small, this absorptive part
should be a higher-order correction to the tree-level am-
plitude. We are then left with 1-particle irreducible graphs
like 3d and 3e. Regarding those, we shall limit ourselves
to point out that the unitary cut depicted in Fig. 3f leads
directly to equation (18) for the cross-section. Notice that
the extra loop in 3f is necessary [12], since the propagator
of an unstable particle does not have a pole in the physical
region.
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